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Abstract. We study p—i—n diodes incorporating InAs/AlAs self-assembled quantum dots (QDs) to
probe the electron and hole levels of the dots. Comparative analysis of capacitance-voltage (C—V),
current-voltage (I —V) and electroluminescence (FL) measurements shows that p—i—n structures
could be successfully used as a quantum dots spectrometer.

Introduction

Among the structures proposed as quantum dots (QDs) spectrometers, devices with Schot-
tky contacts [1] and unipolar structures [2] (i.e. n—i—n or p—i—p diodes) are those more
frequently used. In contrast, p—i—n diode incorporating QDs have not been deeply in-
vestigated. In contrast to the case of Schottky diodes, the potential distribution over the
mtrinsic region (i) of a p—i-n diode is almost linear. This implies a simple procedure for
converting an applied voltage to the energy shift of the QD states. Also, in contrast to
unipolar devices, p—-i—n diodes offer the possibility to investigate in the same device both
the electron and the hole dot states. In this work, we present a study of bipolar transport in
a p-i-n diode incorporating InAs/AlAs QDs. This study is carried out by a comparative
analysis of capacitance-voltage (C—V), current-voltage (/ —V) and electroluminescence
(EL) measurements.

Experimental results and discussion

In our p—i-n diode, the composition of the layers in order of growth on a nt-substrate
is as follows: an n*-doped GaAs buffer layer (nT = 4 x 10'® cm=3); a 100 nm-thick
n-doped GaAs layer (n = 2 x 10'° cm™3); an undoped, intrinsic region (i), which consists
respectively of a 100 nm-thick GaAs layer, a 10.2 nm-thick AlAs barrier and a 60 nm-thick
GaAs layer. The growth was completed by a p+-doped GaAs layer (pT = 2 x 1018 cm™).
The QDs were grown in the middle of the AlAs barrier, by depositing 1.8 ML of InAs.

The C—V and I —V characteristics of the sample are shown in Fig. 1. The C—V curve
is characterized by two distinct regions, — low- and high-capacitance. The value of the
capacitance in the first region is consistent with the value expected for a flat capacitor, with
a distance between the capacitor plates equals to total base length of the structure, L. Sharp
transition from the low- to the high-capacitance region occurs when the flat band regime is
achieved and the electron and hole 2D layers form outside the AlAs barrier.

The formation of the 2D layers is also confirmed by the appearance of Shubnikov—de
Haas-like magneto-capacitance oscillations vs. magnetic field, B, (at fixed voltage) for B
applied parallel to the growth direction. The charge modulation arising in this case affects

316



QWR/QD.04 317

40 T T T T T T T T T T T 1x1074
|~ F—/"10kH ]
L & 5.2----1;; 100 kHz 41x1079
g —— /=1 MHg b
g1 3 1x107°6
| 8 50L& ]
— &4 H11x077
T E
- 136 A 138 140 142 ] " <
é Voltage (V) <107
B2[ ] 8
5 | J1x1070 g
& L ]
© 41x10710
10 | _; ]><10711
B 15 16 17 184 1x10-12
Voltage (V) 3
0 1 . 1 . 1 . 1 . 1 . | ] 1x10713
1.3 1.4 1.5 1.6 1.7 1.8
Voltage (V)

Fig. 1. Capacitance—voltage dependence measured at frequency of 10 kHz and zero magnetic field
(left-bottom) and dec current-voltage characteristics (top-right) of the p-i-n diode. Upper inset:
Capacitance curves near voltage 1.4 V for different frequencies of a modulating signal. Lower
inset: the second derivative of current vs applied voltage.

the distribution of electric potential and screening length, and hence modulates the capac-
itance of the device. The fundamental field, By = [A(1/ B)]~!, measures the electronic
sheet density of 2DEG in the accumulation layer ny = 2eBy/h. Thus, extrapolation of
fundamental field By dependence on applied voltage to zero-B value yields an informa-
tion about voltage at which the flat band regime occurs. The obtained voltage value is close
to GaAs band gap at 4.2 K - 1.512 eV.

In further, we will focus on the resonant features of the capacitance, which appear in
both low- and high-capacitance regions. A wide bump is observed at 1.4 V for a frequency
of 10 kHz (upper inset in Fig. 1). The current increasing is also observed in the /—V
curve within the same voltage region. We believe that this feature is caused by filling of
impurity states located in i-region. This feature depends on the modulation frequency. With
increasing frequency the amplitude of this feature becomes weaker and disappears for a
frequency of about 1 MHz. This frequency dependence could be explained in the next way.
Magnitude of the effect depends on number parameters -— tunneling and emission rates for
both electrons and holes as well as e—/ recombination rate. To reach equilibrium between
impurity levels and emitter, a modulation signal frequency must be much lower than the
thermionic emission rate. When frequency becomes considerably larger than emission rate
the carriers cannot follow the measurement signal and do not modulate charge both at the
edge of space charge region and at the point where the Fermi level crosses the impurity
level.

The second feature appears at around 1.56 V in both the C—V and /—V curves. A
sharp resonance at this point is clearly visible on the second current derivative presented
in lower inset of Fig. 1. A wide bump followed by dip is observed on C—V curve that
correlates with sharp increasing of the current at the same bias voltage. We attribute these
features to capture of holes onto the QDs. Assuming uniform voltage distribution, then
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Fig. 2. EL spectrum of the QD structure measured at 7 = 10 K and 7 = 20 mA.

the leverage factor can be simply calculated for electrons (holes) as ratio )}\iﬁ);;b ){j, where
Xe and Ay are the quantum stand-off distances of the carriers in the accumulation layers
formed to the left and right of the barrier . The carrier sheet concentration, s, provides
us with wavefunction stand-offs [3] (A n ~ ns_l/ 3 ). We obtain the leverage factor for high
capacitance region equal to 0.33 and 0.67 for holes and electrons, respectively. Performing
the procedure for QDs hole state, we estimate the position of ground QDs hole state at 15
meV beneath the top of GaAs valence band.

Around the voltage of 1.67 V we observe a kink on /—V curve that is reflected in C—V
dependence as increase of capacitance. The feature is more visible on the second derivative,
d*1/dV? and should be prescribed to the transport through the ground electron level of
the QD. Using electron leverage factor for this voltage, we obtain the energy position of
the ground electron state of the QD at 105 meV above GaAs band gap. Besides, there
is noticeable increase of current in /—V dependence at 1.71 V (Fig. 1). For that bias a
probability of I'— X tunnelling strongly increases, that yields considerable contribution to
the tunnel current.

To approve our model electroluminescence (EL) measurements were performed. Fig-
ure 2 shows the 10 K resulting EL spectrum of our device. The dot emission appears on
the high energy side of the GaAs emission and it consists of two weak bands peaked at
about 1.59 eV and 1.65 eV. The origin of these features should be the e—h recombination
via indirect exciton states that form at voltages far away the flat band condition. Really,
at voltage bias exceeding 1.5 V the electron and hole 2D layers accumulate on outer sides
of the barrier. The Coulomb attraction should promote the formation of spatially indirect
excitons. However, the EL spectra were measured at 2 V when the e—e interaction in 2DEG
effectively suppresses the formation of indirect excitons. Moreover, we did not observe
any manifestation of interplay between screening and exciton binding like that reported in
[4], for similar device but without QD layer. If a feature in EL spectra at 1.59 eV is due
the electron-hole recombination from the ground states of the dots, the energy gap between
ground electron and hole QD state is 40 meV less, then value obtained from transport
measurements. We assume, that in EL measurements, ground states of QD is affected by
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Coulomb interaction between carriers and excitonic state forms. In this case correspond-
ing transition energy could be considerably lower, especially with spatial 3D confinement.
Thus, we obtain exciton binding energy of order of 40 meV. The next feature observed in
the EL spectra 1.65 eV we attribute to the electron-hole recombination from the excited
states of the QD bare exciton. The weak intensity of the dot signal is probably due to the
presence of non-radiative recombination centers existing in the AlAs layers.

Conclusions

In conclusion, we have used the p-i-n diodes containing the layer of InAs quantum dots
in an insulating region as spectrometer for probing electronic levels of QDs. Advantages
of such devices for capacitance measurements are shown. It is shown that ground electron
level of the InAs quantum dots in AlAs matrix reveals itself 105 meV above the GaAs
conduction band edge, while the lowest hole level moves 15 meV downward the GaAs
valence band edge.
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